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Abstract

In recent papers we investigated the equilibrium statistical mechan-
ics of phase transitions at electrode interfaces. We derived the adsorption
isotherm 0 = A(i, fi) / {1 + A(i, fi) } in which both ^, f are functions of molec-

ular parameters and the applied potential, which satisfies correct scaling to
any desired accuracy. Implicit in our model is the approximation that each
transition is treated as a single adsorbate onto a sublattice of the available
adsorption sites. This form can be extended to include reaction and diffu-
sion kinetics. We discuss the cases with diffusion (small bulk concentration)
and without diffusion(laxge bulk concentration). For the latter our model
is solved mathematically , and we get explicit formulas for the shifts of the
peaks, in terms of the overall kinetic reaction constants. Asymptotic formu-
lae for slow scanning rates are given.

We discuss the case of the Cu/Au(111) UPD, which is treated as a se-
quence of three uncoupled phase transitions. Phenomenological rate con-
stants are derived fitting the theory to the experiments of Kolb et al.
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1 INTRODUCTION

In previous work we have proposed the sticky site model (SSM) for
the chemisorption of adsorbates from fluids onto crystal surfaces [1, 2]. The
crystal surface is represented by an array of sticky point adsorption sites.
This permits the formal decoupling of the statistical mechanics into the 1-
dimensional problem of the smooth electrode near an electrolyte, (the classic
double layer problem), and the 2-dimensional lattice gas of the adsorption
onto the array of sticky sites. In this model the binding process of individual
atoms is coupled to the cooperative effects that take place at the surface
through mean field parameters, and the adsorption process is treated by
studying the two dimensional lattice gas of the adsorbates, with two param-
eters obtained from the double layer problem:

"* The lattice gas fugacity

i = Aip,(o', ) (1)

where Aj is the binding probability of the adsorbate to the individual
site and pj(0, 0) is the contact density of the ion i for the smooth
electrode surface. [12, 13, 14].

" The probability g2 of two adsorbate atoms to be in two neighboring
adsorption sites. In our theory it turns out to be the pair correlation
function of the adsorbates in contact with the smooth electrode wall
[1]

92 = g2(r,,). (2)

These two parameters determine the equilibrium phase behavior of the ad-
sorbate: Our model gives exact conditions for g2 for the occurrence of phase
transitions, which were discussed in our previous work [1, 2].

In the present work we extend the equilibrium (zero scanning rate) the-
ory to include the dynamic regime of non-zero scanning rates. We do that
by using a simple mean field argument. In section 2 we describe the basic
theory for the case without mass transport, which is explicitly solved. In
section 3 we include diffusion and mass transport. In section 4 we apply our
theory to the underpotential deposition of Cu onto Au(l11), and we give a
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short discussion of our results.

2 KINETIC MODEL, NO DIFFUSION

There is a very extensive literature on the voltammograms for the elec-
trodeposition of metals, starting with the early work of Koryta [3], Delahay
[4], Brdicka [5], Guidelli[6], Laviron [7], Lorenz[8], Reinmuth[9], Sadkowski[10]
and Lantelme[11]. However these models do not consider the case of ad-
sorption onto a lattice with cooperative effects, such as phase transitions.
In our statistical mechanics treatment of phase transitions in the ad-layers
[2, 12, 13, 14] the adsorption isotherm is written in the form of a Pad6 ap-
proximant, which represents to any required precision the exact coexistence
line and universal critical behaviour. This form of the isotherm lends itself
to a simple way to include kinetic effects, which in the limit of very slow
scanning rates gives back the required equilibrium phase behaviour.

The details of the kinetics of the formation of the monolayer adsorbates
has been discussed in the past [15, 16, 17]. We believe that the discussion of
nucleation processes can be included in our more general, linear response type
theory, by specific choices of the time dependence of the kinetic constants
Ka and Kd (see below).

In our treatment we restrict ourselves to single species adsorption onto a
lattice. Multiple species adsorption [18] will not be discussed here as such.
However, in the example of the underpotential deposition of Cu onto Au(111)
in the presence of sulphuric acid as discussed below, multiple adsorption is
treated as a sequence of single species adsorption processes onto sublattices
of the substrate.

A kinetic equation for the fraction of occupied sites 6, can be obtained
from a simple probabilistic argument. The probability of a site to be occupied
by i is proportional to the density of i at the electrode surface and the number
of free sites.

Pi(0, 0)(1 - 00 (3)
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The probability of an ion that is adsorbed to be dissolved is proportional to
6i. Therefore, the rate of change is

K- - pi(O, b)(1 - O,) - Kdo, (4)

The two reaction rate constants K. and Kd must satisfy at equilibrium
the relation

0 = A( ,tf)/{1 + A(ii)} (5)

and therefore

A= A(i, fi)= K.pi(0,0 ) (6)
Kd

Here A is a polynomial defined in our previous work [1, 2]. The coefficients
of this polynomial are obtained from exact high and low fugacity expansions.
The variables axe the individual species fugacity 1, and the lateral interaction
parameter g2. However, it is more convenient to use the variable

S= i[9 2]EL/ 2 , (7)

where qL is the number of neighbors of the lattice (6 for the triangular (cen-
ter filled regular hexagons) lattice and 3 for the honeycomb ( empty center
hexagons)). In our model, and because of the Yang-Lee theorem [21 the
coexistence line is given by

u=-1 (8)

so that for the discussion of the phase transitions we need to consider only
the range fi "" 1.

The equilibrium requirement is satisfied for any Kd with an arbitrary time
, or voltage dependence. A form consistent with Tafel's equation[19] is

Kd = KoeaTI, (9)

where aT is the so called Tafel parameter. Eq.(4) is conveniently written in
the form

-- i 6 ,Kgd + K.gp(O, 0), (10)

where we have defined

K.d = Kopi(0, 0) + Kd. (11)
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Equation (10) is a first order differential equation that has an explicit
solution in terms of the time dependent coefficients Kad, Kopi (0, 4). The
time dependence of these constants is completely arbitrary. No assumptions
or models are required by our mathematical treatment. If the scanning of
the potential is linear, as in the voltarnmogram, the potential and the time
are equivalent variables. But for a different experiment, such as for example
chronocoulometry, this is not necessarily so. We have

e - e ft dti{K"d} 6 0 + J dtjK pi(O, ?k)e-', dt'{Kod} (12)

We define the fraction of occupied sites for an infinitely slow scanning
rate

ONOt = K.p,(0, A) (1A

so that Equation (10) can be written in the simpler form

-i= -[6, -- 1]Kad, (14)

which in turn can be written as

at _-AOiod & (15)

with
o, = lei- ,(16)

The solution of Eq.(15) is

Ao,(t) = AO,(O)e- fo dt K.d() -j dt, a98 (ti) e-. , d,({K.,a(,)) (17)

We consider here the case in which we have a linear potential sweep

b -- Oi. + Vt (18)

where -0i,, is the initial value of the potential, and v is the scanning rate.
Then, we can use 4 as our new variable. Iteration of Eq(17) yields the series
in v, for low scanning rates and with the assumption A6,(O) = 0
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(,)) "( - K.d(?,) 490O + KL,(,) KAd() a,/, -... (19)

This equation should be useful in calculating the overall kinetic constants
K~d from the shifts in the voltammogram.

A simple useful formula that can be obtained from this equation is that
for small scanning rates v the zero scanning rate limit is given by

O8(O) = (1/2) [8oj"d(O) + rd(O)]J, (20)

where oqxd(o) is the isotherm for oxidation scan and O'ed(o) for the reduction
scan. A corollary to this relation is the convenient formula

0,,=o res,,ip + odeps]
Opike = (1/2) [e,, + e (21)

An illustration of these equations for this case without diffusion is
shown in Figure 1. Since we are interested in sharp transitions we lose es-
sentially no accuracy in writing (see ref. [20] for a detailed discussion of this
point)

A4 ý-- aP (22)

This form implies that the fraction of occupied sites is a broadened step or
Heaviside function. The width of the corresponding voltammogram spike
is inversely proportional to n. 1 The physical meaning of the parameter
n is connected with the intrinsic width of the transitions due to defects,
impurities, domain size, and also to the instrumental width of the experiment.
In Figure 1 the shifts for different values of n axe shown. For any value of the
width the limiting slope is the same, and therefore, the value of the kinetic
constant K~d can be deduced from experiments done at different scanning
rates v using equation (19).

More precisely

n-- 1 (n + 1)2

for n > 1. For large n this is approximately = 4/n
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3 CASE WITH DIFFUSION

We consider now the diffusion process in the following simplified way: We
will assume that since the scanning rate is low, the system is always close to
equilibrium. The important parameter is fi Eq.(7). We recall also that

ii = Aipi (0, 0) (23)

Furthermore, the lateral interaction parameter 92

92 = gs°(Rl, Rj) [i,j = nearest lattice neighbors], (24)

where gO is the pair correlation of the adsorbates sitting in neighboring ad-
sorption sites but for the undecorated, smooth electrode surface. If the pa-
rameter 6 is less than unity then we are in the 1 phase region. If it is larger
than 1, then we are in the two phase region. The coexistence curve is ob-
tained setting fi = 1 in Eq.(7).

Our basic assumption is that we now introduce as our new variables

zi(t) = ip,(ot)/p, (25)

U,(t) = fip,(0,t)/p, (26)

where pi is the bulk concentration of i. We get the ratio

7,(t) = p,(Ot)/p, (27)

from free diffusion theory, which is completely consistent with the treatment
usually given in the textbooks of-electrochemistry[19].

The current density is

ji = ii/A (28)

where i, is the current intensity and A is the area of the electrode, obeys the
continuity equation

p(O, t) - (29)
Oz
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and in principle the linear relaxation yields for the current density

jO = -Di (z + rip,(0, t)E(O) (30)

where Di is the diffusion constant of i, pi(O, t) is the contact density at time t,
rq is the transport coefficient and E(O) is the deectric field at z = 0. Following
the common practice in the literature [19, 21], we ignore field effects in the
diffusion. This however means that the diffusion coefficient Di is an effective
diffusion parameter which includes the barrier effects of the double layer,
which is different for anions and cations.

The diffusion equation is

op,(z,&) = D Op(z')2 (31)

with the boundary conditions

t = 0 pi(z, o) = pi

which implies that we assume that initially the system is in equilibrium, and
that the initial density profile is uniform. More precisely

t > 0 p,(00,t) = p, (32)

where the bulk concentration is pi.
When

t>0 z=0

we assume that all the ions that have arrived by diffusion to the electrode
either react or axe diffused back into the solution. Mass conservation Eq.(29)
yields at the electrode surface

_ = p,(0,t) = ai 008(3
Oz - - (33)

where the surface concentration r1 is given in terms of the fraction of occupied
sites 9, and the number of sites M per unit area A:

m = M/A

r, = m0, (34)
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We solve the diffusion equation (31) by Laplace transformation:
Define

M,(z, 8) = dte•pi(z, t) (35)

then
dt =S ,(Z,5) - p,(Z,0) (36)

therefore equation (31) becomes

82
s•,(z, s) - Dis) = p,(z,0) (37)

The solution which satisfies the boundary condition equation (32) is

A,(z, s) = B(s)e--V/•.i + p,/is (38)

From here we get for the boundary condition Eq.(33), the mass conser-
vation condition at the electrode wall,

a ýj(z, s)=-/sI L V(z,s) - p Is] z=0 (39)

and

M,(0,S) = pls M o (40)

The inverse Laplace transform of this equation yields

77t It 1 (•i

m j lO (41)

where -y(t) is defined in Eq.(27). This the well known result for diffusion
[19).

For linear potential scanning we can write, for k = 4'o + vt

_tiI___VfV_ ( P 1 (42)
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For slow scanning rates, again, we may use the approximation

so that

m-ti J% 1~ ipL (43)

4 THE CASE OF CU UPD ON GOLD

A case of particular interest is the underpotentia1 deposition (UPD) of
Cu onto Au(1ll) in the presence of sulphuric acid. As is known [22, 23] the
voltammogram shows two distinct peaks, which do not appear in the other
faces of gold, the (110) or (100) face, or when another anion, such as CIO
is used. The observation is that this splitting of the copper deposition is
specifically tied to the presence of HSO. ions. The observation of strong
chemical binding of the deposited copper to oxygen [24], strongly suggests
that the bisulphate ion is chemisorbed to the substrate. For these reasons a

model was suggested in which the bisulphate formed a /3 x V/3 template (see
Figure 2)[12]. This template leaves a honeycomb lattice of adsorption sites for
the copper (Figure 3), which implies that the first peak of the voltammogram
corresponds to the filling of 2/3 of the original adsorption sites of the Au(111)
surface. The second peak is due to the replacement of the bisulphate by
copper, which implies the filling of the remaining 1/3 of the available sites
( Figure 4). This model is in accordance with the experiments of Itaya [25]
.and Kolb [22].

-The system undergoes three phase transitions [13, 14, 20]:

1. An order-disorder second order hard hexagon phase transition, due to
the desorption of the bisulphate ions. In the presence of copper, the
bisulphate is readsorbed, and the honeycomb template is reconstructed.
This corresponds to the broad foot of the first peak.

2. A first order transition on the honeycomb lattice (Figure 3), corre-
sponding to the first peak of the voltammogram.

10



3. A first order transition on the V/3 x V/3 triangular lattice, caused by
the displacement of the bisulphate by copper.

The dynamics of this system was recently reexamined [26, 27].There are
two ions that participate in the transport of charge:

" The bisulphate, that carries a negative charge which it keeps when
adsorbed onto the surface. Therefore, it. will contribute only to the
capacitive current density jc. The other contribution to jc is from'the
diffuse layer.

" The copper, which is adsorbed and discharged to some extent. It's
electrovalence will change from vi in the bulk phase to (i at the electrode
interface. Furthermore, (i should be a function of the potential 0

Therefore, the total current density is ( for a recent discussion see, for example
the work of De Levie [211 and Lantelme [11])

JT=tC+jF (44)

where jT is the total current density, jc is the capacitive contribution and

JF is the Faradaic contribution. If we neglect double layer effects, then the
capacitive current is due to the bisulphate, and the faradaic current almost
exclusively to the discharge of the copper ions. Then

.,Cil dO
1C = (1/A) C, + 0 d±- b (45)

I. dikjI di
gives the current due to the discharge of the capacitor as well as its change
in capacitance.

The current associated with the cation (in this case the copper ) can be
written as

jF =(eMIA) OjL.+CO dik (46)

where M is the number of adsorption sites per area A, e is the elementary
charge, (i is the electrovalence, and 4 the potential.

The charge of the adsorbate will change with the applied potential be-
cause the electron density at the surface is changing. Intuitively we take the
exponential form

G(t) M e c(i), (47)
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where wC and Obe are adjustable parameters, responsible for the broadening
of the baseline of the voltammogram. In our model it represents the change
in charge with potential, which we believe is a monotonic and smooth func-
tion of the potential.

We consider only the copper current in the calculations. The bisulphate
current contributes only to the broad foot of the first peak of the voltammo-
gram, and will be discussed in future work. We have solved equations( 17)
and (42) numerically, and we fitted the three regions of Kolb's voltammogram
to our theory. A plausible explanation for the smaller diffusion constants of
the second peak is that there are very different double layer barriers for the
ions in this case. We hope to come back to this point in the future.

Based on the fact that for very sharp transitions the most important con-
sideration is that condition Eq.(8) is satisfied, so that for the purposes of this
discussion we choose the kinetic adsorption constant equations Eq.(4),(ref.[14J)
to be of the form

KapIl = K,.e(nc,,p-,c,,p) e[Ccu,p(¢-cu,p-¢c• )] (48)

and the kinetic desorption constant

Kdpilp = ,de'Cu'P'6 ' -CU (49)

These forms will satisfy equation (6) with the simplified form of A taken
from equation (22). For each of the the three regions, the foot (p=l), the
first peak (p=2) and the second peak (p=3), we fit the voltaxnmogram to
a set of kinetic constants. For the broad foot of the first peak the effect of
diffusion has been neglected , and therefore a very large value of the diffusion
constant is displayed.

Figures 5 and 6 show the result of our calculations, and reflect rather
good agreement, except for the region of the broad foot, where the bisulphate
current is missing.

In summary, our extension to the dynamic regime provides a way to cal-
culate overall kinetic parameters from the shifts of the peaks in the voltam-
mograms of processes with phase transitions.
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FIGURE CAPTIONS

FIGURE 1
Shifts of the voltammogram peak for a single peak. The width of the

peak is proportional to 4/n for large n.

FIGURE 2
Geometry of the ordered adlayer with 1/3 bisulphate.

FIGURE 3
Geometry of the adlayer with 1/3 bisulphate and 2/3 of copper. The

copper ring holds the bisulphate structure, but the top of the bisulphate is
still higher than the copper.

FIGURE 4
Geometry of the adlayer wher the 1/3 bisulphate has been replaced by

copper. The bisulphate however is still adsorbed on top of the copper.

FIGURE 5
Copper adsorption isotherm showing the ordered phase for high voltage,

the disordered phase between 0.22V and 0.45V, and the ordered region be-
tween 0.22V and the bulk deposition.

FIGURE 6
Comparison of the theory to Kolb's voltammogram [23], for 0.1M H2S0 4 ,

10-3M CuSO4 and a scanning rate of lmV/s. The theory includes only
the copper contribution. The parameters are:

Foot(l): K. = 1.0, KX = 1.0, D = 0.9

Peak 1(2): K. = 0.23,K d = 0.11,D = 1.0 x 10-5, nj - 9, m -= 5

Peak 2(3): KX = 0.003, Kd = 0.05, D = 1.0 x 106, n -= 6, m, = 4
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